Abstract
Moving cast shadows of moving objects significantly degrade the performance of many high-level computer vision applications such as object tracking, object classification, behavior recognition and scene interpretation. Because they possess similar motion characteristics with their objects, moving cast shadow detection is still challenging. In this paper, the foreground is detected by background subtraction and the shadow is detected by combination of Mean-Shift and Region Merging Segmentation. Using Gabor method, we obtain the moving targets with texture features. According to the characteristics of shadow in HSV space and texture feature, the shadow is detected and removed to eliminate the shadow interference for the subsequent processing of moving targets.
 Finally, to guarantee the integrity of shadows and objects for further image processing, a simple post-processing procedure is designed to refine the results, which also drastically improves the accuracy of moving shadow detection. Extensive experiments on publicly common datasets that the performance of the proposed framework is superior to representative state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Turkish Journal of Computer and Mathematics Education (TURCOMAT)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.