Abstract
<span lang="EN-US">Alzheimer’s disease (AD) is an irremediable neurodegenerative illness developed by the fast deterioration of brain cells. AD is mostly common in elder people and it extremely disturbs the physical and mental health of patients, therefore early detection is essential to prevent AD development. However, the precise detection of AD and mild cognitive impairment (MCI) is difficult during classification. In this paper, the Residual network i.e., ResNet-18 is used for extracting the features, and the proposed improved marine predators algorithm (IMPA) is developed for choosing the optimum features to perform an effective classification of AD. The multi-verse optimizer (MVO) used in the IMPA helps to balance exploration and exploitation, which leads to the selection of optimal relevant features. Further, the classification of AD is accomplished using the multiclass support vector machine (MSVM). Open access series of imaging studies-1 (OASIS-1) and Alzheimer disease neuroimaging initiative (ADNI) datasets are used to evaluate the IMPA-MSVM method. The performance of the IMPA-MSVM method is analyzed using accuracy, sensitivity, specificity, positive predictive value (PPV) and matthews correlation coefficient (MCC). The existing methods such as the <a name="_Hlk134426295"></a>deep learning-based segmenting method using SegNet (DLSS), mish activation function (MAF) with spatial transformer network (STN) and BrainNet2D are used to evaluate the IMPA-MSVM method. The accuracy of IMPA-MSVM for the ADNI dataset is 98.43% which is more when compared to the DLSS and MAF-STN.</span>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.