Abstract

AbstractIn the artificial neural networks (ANNs), feature selection is a well-researched problem, which can improve the network performance and speed up the training of the network. The statistical-based methods and the artificial intelligence-based methods have been widely used to feature selection, and the latter are more attractive. In this paper, using genetic algorithm (GA) combining with mutual information (MI) to evolve a nearoptimal input feature subset for ANNs is proposed, in which mutual information between each input and each output of the data set is employed in mutation in evolutionary process to purposefully guide search direction based on some criterions. By examining the forecasting at the Australian Bureau of Meteorology, the simulation of three different methods of feature selection shows that the proposed method can reduce the dimensionality of inputs, speed up the training of the network and get better performance.KeywordsRoot Mean Square ErrorFeature SelectionMutual InformationFeature SubsetAustralian BureauThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.