Abstract

Atrial fibrillation (AF) is a common and extremely harmful arrhythmia disease. Automatic detection of AF based on ECG helps accurate and timely detection of the condition. However, the existing AF detection methods are mostly based on complex signal transformation or precise waveform localization. This is a big challenge for complex, variable, and susceptible ECG signals. Therefore, we propose a simple feature extraction method based on gradient set (GDS) for AF detection. The method first calculates the GDS of the ECG segment and then calculates the statistical distribution feature and the information quantity feature of the GDS as the input of the classifier. Experiments on four databases include 146 subjects show that the feature extraction method for detecting AF proposed in this paper has the characteristics of simple calculation, noise tolerance, and high adaptability to all kinds of classifiers, and got the best performance on the DNN classifier we designed. Therefore, it is a good choice for feature extraction in AF detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.