Abstract

This paper deals with the analysis and implementation of a new scalar control technique for industrial interior permanent-magnet synchronous motor drives that exploits energy-saving capability. In particular, the proposed control strategy forces the conditions of maximum torque per ampere (MTPA), flux weakening (FW), and maximum torque per voltage (MTPV) simply by assigning polynomial relationships between the operating angles of the machine. Although the dynamic performance of the drive is worsened compared to that of vector control schemes, the modified scalar control allows us to work in energetic conditions, very close to those obtained with vector-controlled drives exploiting MTPA, FW, and MTPV strategies. The control techniques are implemented without using any speed and voltage measurement and with only a single current feedback. This paper provides a detailed study of the control strategy, showing the effectiveness and limitations of the method through simulations and experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call