Abstract

Each mixture of deficient molecular families of a specific disease induces the disease at a different time frame in the future. Based on this, we propose a novel methodology for personalizing a person's level of future susceptibility to a specific disease by inferring the mixture of his/her molecular families, whose combined deficiencies is likely to induce the disease. We implemented the methodology in a working system called DRIT, which consists of the following components: logic inferencer, information extractor, risk indicator, and interrelationship between molecular families modeler. The information extractor takes advantage of the exponential increase of biomedical literature to extract the common biomarkers that test positive among most patients with a specific disease. The logic inferencer transforms the hierarchical interrelationships between the molecular families of a disease into rule-based specifications. The interrelationship between molecular families modeler models the hierarchical interrelationships between the molecular families, whose biomarkers were extracted by the information extractor. It employs the specification rules and the inference rules for predicate logic to infer as many as possible probable deficient molecular families for a person based on his/her few molecular families, whose biomarkers tested positive by medical screening. The risk indicator outputs a risk indicator value that reflects a person's level of future susceptibility to the disease. We evaluated DRIT by comparing it experimentally with a comparable method. Results revealed marked improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.