Abstract

This paper presents an effective machine learning-based depth selection algorithm for CTU (Coding Tree Unit) in HEVC (High Efficiency Video Coding). Existing machine learning methods are limited in their ability in handling the initial depth decision of CU (Coding Unit) and selecting the proper set of input features for the depth selection model. In this paper, we first propose a new classification approach for the initial division depth prediction. In particular, we study the correlation of the texture complexity, QPs (quantization parameters) and the depth decision of the CUs to forecast the original partition depth of the current CUs. Secondly, we further aim to determine the input features of the classifier by analysing the correlation between depth decision of the CUs, picture distortion and the bit-rate. Using the found relationships, we also study a decision method for the end partition depth of the current CUs using bit-rate and picture distortion as input. Finally, we formulate the depth division of the CUs as a binary classification problem and use the nearest neighbor classifier to conduct classification. Our proposed method can significantly improve the efficiency of inter-frame coding by circumventing the traversing cost of the division depth. It shows that the mentioned method can reduce the time spent by 34.56% compared to HM-16.9 while keeping the partition depth of the CUs correct.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.