Abstract

Dynamic positioning (DP) is an operation method whereby the position of a surface vessel is maintained in close proximity to a required position in the horizontal plane through the controlled application of forces and moments generated by purposely installed thrusters. When estimating thrust, this kind of conventional control system often uses many acceleration sensors, velocity sensors, environment sensors, and filters. Usually, these sensors have measured electrical errors. To reduce the number of sensors used and to decrease the measurement errors, this article presents an effective control system for estimating thrust and moment commands, which is based on energy and impulsemomentum principles. Donha and Brinati's example is followed to verify the feasibility of the present control system, which performs semisubmersible platform positioning using an LQG controller, and the results are feasible and economical. A simulated coring vessel marine positioning in southern Taiwan is presented, which can estimate the counterthrust and moment commands, and the complex environmental forces and moments are described. The results can provide a valuable control system for dynamically positioned vessels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call