Abstract

To overcome the over-stiffness and the imprecise magneto-electro-elastic coupling effects of finite element model, we presented a cell-based smoothed finite element model to more accurately simulate the transient responses of magneto-electro-elastic structures. In the cell-based smoothed finite element model, the gradient smoothing technique was introduced into a magneto-electro-elastic multi-physical-field finite element model. The cell-based smoothed finite element model can achieve a close-to-exact stiffness of the continuum structures which could automatically discrete elements for complicated regions more readily and thus remarkably reduced the numerical errors. In addition, the modified Wilson- θ method was presented for solving the motion equation of magneto-electro-elastic structures. Several numerical examples were investigated and exhibited that the cell-based smoothed finite element model could receive more accurate and reliable simulation results than the standard finite element model. Besides, the cell-based smoothed finite element model was employed to calculate transient responses of magneto-electro-elastic sensor and typical micro-electro-mechanical systems–based magneto-electro-elastic energy harvester. Therefore, the cell-based smoothed finite element model can be adopted to tackle the practical magneto-electro-elastic problems such as smart vibration transducers, magnetic field sensors, and energy harvester devices in intelligent magneto-electro-elastic structures systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.