Abstract

An effective built-in self-test (BIST) scheme for parallel multipliers (array and tree) is proposed. The new scheme combines the advantages of deterministic and pseudorandom testing and avoids their drawbacks. No modifications to the multiplier structure are required. A guaranteed very high fault coverage of a comprehensive cellular fault model is achieved. The results do not depend either on the gate-level implementation of the multiplier cells or the architecture of the multiplier (whether it is a carry-propagate or carry-save array multiplier or a tree multiplier) or on the multiplier size. A small deterministic test set of highly regular test vectors is used which exploits the inherent regularity of the multiplier architecture. The regularity of the test vectors allows for their on-chip generation with a very small hardware overhead, which is equivalent to the hardware overhead of pseudorandom testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.