Abstract

Coriolis coupling plays a crucial role in reactive scattering, but dynamics calculations including the complete Coriolis coupling significantly increase the difficulty of numerical evolution due to the corresponding expensive matrix processing. The coupled state approximation that completely ignores the off-diagonal Coriolis coupling saves computational cost significantly but its error is usually unacceptable. In this paper, an improved coupled state approximation inspired by recently published results [D. Yang, X. Hu, D. H. Zhang and D. Xie, J. Chem. Phys., 2018, 148, 084101.] of the inelastic scattering problem is extended to deal with the reactive scattering. The calculations using the time-dependent wave packet method reveal that the new method can accurately reproduce the rigorous results of the H + HD (j0 < 3) → D + H2 reaction and immensely improve the computational efficiency. Additionally, we extend the new method to the non-adiabatic Li(2p) + H2 (v0 = 0, j0 = 0, 1) → H + LiH reaction, showcasing its advantages of low computational cost and high accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.