Abstract
The availability of some extra information, along with the actual variable of interest, may be easily accessible in different practical situations. A sensible use of the additional source may help to improve the properties of statistical techniques. In this study, we focus on the estimators for calibration and intend to propose a setup where we reply only on first two moments instead of modeling the whole distributional shape. We have proposed an estimator for linear calibration problems and investigated it under normal and skewed environments. We have partitioned its mean squared error into intrinsic and estimation components. We have observed that the bias and mean squared error of the proposed estimator are function of four dimensionless quantities. It is to be noticed that both the classical and the inverse estimators become the special cases of the proposed estimator. Moreover, the mean squared error of the proposed estimator and the exact mean squared error of the inverse estimator coincide. We have also observed that the proposed estimator performs quite well for skewed errors as well. The real data applications are also included in the study for practical considerations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.