Abstract

The uncertain parameters of automotive powertrain mounting systems (PMSs) may involve imprecise information (e.g., incomplete, different and conflicting information) in engineering practice. An effective approach is proposed for the reliability-based robust design optimization (RBRDO) of uncertain PMSs involving imprecise information. In the proposed approach, the imprecise information of uncertain parameters is firstly addressed and combined based on evidence theory, and the uncertain parameters are treated as evidence variables. Then, an uncertainty analysis method named evidence perturbation-central difference method (EPCDM) is derived to fast estimate the mean intervals, standard deviation intervals, and the belief and plausibility measures related to system inherent characteristics. A reference method named evidence-Monte Carlo method (EMCM) is developed to verify the effectiveness of EPCDM. Next, to conduct robustness design, the weighted sum of the lower bounds of means and the upper bounds of standard deviations of system inherent characteristics are taken to construct optimization objective; while to perform reliability design, the belief measures related to system inherent characteristics are used to create reliability constraints. Afterwards, a nested RBRDO model is established to explore the optimum design of the PMS, which considers both reliability and robustness simultaneously. The nested PBRDO can be effectively simplified based on EPCDM. The effectiveness of the proposed approach is finally demonstrated by the application example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.