Abstract
The system of ordinary differential equations has many uses in contemporary mathematics and engineering. Finding the numerical solution to a system of ordinary differential equations for any arbitrary interval is very appealing to researchers. The numerical solution of a system of fourth-order ordinary differential equations on any finite interval [a,b] is found in this work using a symmetric Bernstein approximation. This technique is based on the operational matrices of Bernstein polynomials for solving the system of fourth-order ODEs. First, using Chebyshev collocation nodes, a generalised approximation of the system of ordinary differential equations is discretized into a system of linear algebraic equations that can be solved using any standard rule, such as Gaussian elimination. We obtain the numerical solution in the form of a polynomial after obtaining the unknowns. The Hyers–Ulam and Hyers–Ulam–Rassias stability analyses are provided to demonstrate that the proposed technique is stable under certain conditions. The results of numerical experiments using the proposed technique are plotted in figures to demonstrate the accuracy of the specified approach. The results show that the suggested Bernstein approximation method for any interval is quick and effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.