Abstract
Energy price time series exhibit nonlinear and nonstationary features, which make accurate forecasting energy prices challenging. In this paper, we propose a novel decomposition-ensemble forecasting paradigm based on ensemble empirical mode decomposition (EEMD) and local linear prediction (LLP). The EEMD is used to decompose energy price time series into components, including several intrinsic mode functions and one residual with a simplified structure. Motivated by the findings of the fully local characteristics of a time series decomposed by the EEMD, we adopt the LLP technique to forecast each component. The forecasting results of all the components are aggregated as a final forecast. For validation, three types of energy price time series, crude oil, electricity and natural gas prices, are studied. The experimental results indicate that the proposed model achieves an improvement in terms of both level forecasting and direction forecasting. The performance of the proposed model is also validated through comparison with several energy price forecasting approaches from the literature. In addition, the robustness and the effects of the parameter settings of LLP are investigated. We conclude the proposed model is easy to implement and efficient for energy price forecasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.