Abstract

In the futile questioning problem, one must decide whether acquisition of additional information can possibly lead to the proof of a conclusion. Solution of that problem demands evaluation of a quantified Boolean formula at the second level of the polynomial hierarchy. The same evaluation problem, called Q-ALL SAT, arises in many other applications. In this paper, we introduce a special subclass of Q-ALL SAT that is at the first level of the polynomial hierarchy. We develop a solution algorithm for the general case that uses a backtracking search and a new form of learning of clauses. Results are reported for two sets of instances involving a robot route problem and a game problem. For these instances, the algorithm is substantially faster than state-of-the-art solvers for quantified Boolean formulas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.