Abstract

A necessary element for the predicted topological state in Kondo insulator SmB6 is the hybridization gap which opens in this compound at low temperatures. In this work, we present a comparative study of the in-gap density of states due to Sm vacancies by Raman scattering spectroscopy and heat capacity for samples where the number of Sm vacancies is equal to or below 1%. We demonstrate that hybridization gap is very sensitive to the presence of Sm vacancies. At the amount of vacancies above 1% the gap fills in with impurity states and low temperature heat capacity is enhanced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call