Abstract

In Monte Carlo simulations of chemical short-range ordering on a square lattice, the number of single-atom domains was found to depend on the presence of antiphase boundaries and on the mechanism by which ordering occurred. When antiphase boundaries were present and the ordering occurred by a vacancy mechanism, the number of single-atom domains was found to increase with decreasing temperature, in contrast to thermodynamic predictions. This is understood as a consequence of highly correlated vacancy motions in those regions of the lattice away from antiphase boundaries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.