Abstract

During the past two decades, most researchers employed a questionnaire to characterize the effect of noise on psychosomatic responses. Developments in physiological techniques offer a non-invasive method for recording brain activity with electroencephalography (EEG). This method for assessing the impact of noise on attention is growing in popularity. The aim of this study was to investigate brain activity changes in response to noise exposure during attention-demanding tasks by using EEG power and phase coherence estimation. We hypothesized that brain rhythms could be affected by environmental stimuli and would be reflected in the EEG power and phase coherence. Nineteen healthy right-handed university students (mean age = 21.5 ± 2.0 years) participated in this study. The experiment comprised recording EEG data for participants in the following steps: rest with eyes closed (< 50 dBA), rest with eyes open, listening in a noisy environment (85 dBA), performance on an attention-demanding task in a quiet environment (< 50 dBA), and performance on an attention-demanding task in a noisy environment (85 dBA). Significant differences were observed between stages, and the participants performed more effectively in the quiet environment, where they showed higher rates of correct responses (p <.05). From the assessment of the EEG power and phase coherence estimation, the study demonstrated the following: (1) Alpha-2 (10-13 Hz) power and phase coherence decreased when participants shifted from closed eyes to open eyes, while theta power increased. (2) In contrast, during the noise exposure phase, whether during an attention-demanding task or not, beta (13-30 Hz) phase coherence decreased in the brain, but theta phase coherence was not affected compared to the results in the quiet environment. We suggest that the high frequency of neural synchronization is relevant for cognitive performance, and that participants at risk for selective attention are affected by noise exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call