Abstract
Motor imagery (MI) brain–computer interface (BCI) and neurofeedback (NF) with electroencephalogram (EEG) signals are commonly used for motor function improvement in healthy subjects and to restore neurological functions in stroke patients. Generally, in order to decrease noisy and redundant information in unrelated EEG channels, channel selection methods are used which provide feasible BCI and NF implementations with better performances. Our assumption is that there are causal interactions between the channels of EEG signal in MI tasks that are repeated in different trials of a BCI and NF experiment. Therefore, a novel method for EEG channel selection is proposed which is based on Granger causality (GC) analysis. Additionally, the machine-learning approach is used to cluster independent component analysis (ICA) components of the EEG signal into artifact and normal EEG clusters. After channel selection, using the common spatial pattern (CSP) and regularized CSP (RCSP), features are extracted and with the k-nearest neighbor (k-NN), support vector machine (SVM) and linear discriminant analysis (LDA) classifiers, MI tasks are classified into left and right hand MI. The goal of this study is to achieve a method resulting in lower EEG channels with higher classification performance in MI-based BCI and NF by causal constraint. The proposed method based on GC, with only eight selected channels, results in 93.03% accuracy, 92.93% sensitivity, and 93.12% specificity, with RCSP feature extractor and best classifier for each subject, after being applied on Physionet MI dataset, which is increased by 3.95%, 3.73%, and 4.13%, in comparison with correlation-based channel selection method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.