Abstract

A detector system for positron emission tomography with time-of-flight capability has been built to serve as an educational tool for undergraduate students. The set-up consists of 48 BaF 2 scintillator crystals, each coupled to a fast photo-multiplier tube, mounted in a circular geometry. The analogue detector pulses are handled by fast constant fraction discriminators. A dedicated unit reduces the 48 channels to eight channels via delay-line encoding, and the signals are then fed to an eight channel fast time-to-digital converter. A VME processor sorts the events and sends them to a workstation where the coincident events are extracted. The time resolution of the detectors together with fast VME based electronics allows for time-of-flight measurements to improve on the signal-to-noise ratio in the reconstructed images. The system can be used for different types of exercises for the students, varying from the fundamentals of scintillator detectors to advanced image reconstruction. The set-up is described and some results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.