Abstract
Due to lack of a word/phrase/sentence boundary, summarization of Thai multiple documents has several challenges in unit segmentation, unit selection, duplication elimination, and evaluation dataset construction. In this article, we introduce Thai Elementary Discourse Units (TEDUs) and their derivatives, called Combined TEDUs (CTEDUs), and then present our three-stage method of Thai multi-document summarization, that is, unit segmentation, unit-graph formulation, and unit selection and summary generation. To examine performance of our proposed method, a number of experiments are conducted using 50 sets of Thai news articles with their manually constructed reference summaries. Based on measures of ROUGE-1, ROUGE-2, and ROUGE-SU4, the experimental results show that: (1) the TEDU-based summarization outperforms paragraph-based summarization; (2) our proposed graph-based TEDU weighting with importance-based selection achieves the best performance; and (3) unit duplication consideration and weight recalculation help improve summary quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Asian and Low-Resource Language Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.