Abstract

A novel deep eutectic solvent-magnetic molecularly imprinted polymer (DES-MMIP) for the specific removal of oxalic acid (OA) was prepared by an environmentally friendly deep eutectic solvent, consisting of betaine, citric acid, and glycerol, which acted as the functional monomer for polymerization. The structure and morphology of DES-MMIPs were studied by X-ray diffraction, scanning and transmission electron microscopy, thermal gravimetric analysis, Fourier transform infrared spectroscopy, and vibrating sample magnetometer. DES-MMIPs had a core-shell structure, with magnetic iron oxide as the core, and showed good thermal stability and high adsorption capacity (18.73mg/g) for OA. The adsorption process of OA by DES-MMIPs followed the pseudo-second-order kinetic model and Langmuir isotherm model. DES-MMIPs had significant selectivity for OA and their imprinting factor was 3.26. When applied to real samples, high performance liquid chromatography analysis showed that DES-MMIPs could remove OA from both spinach and blood serum. These findings provide potential methods for removal of OA from vegetables and for specific removal of OA in renal dialysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call