Abstract

Centroidal Voronoi tessellations (CVTs) are special Voronoi tessellations whose generators are also the centers of mass (centroids) of the Voronoi regions with respect to a given density function and CVT-based methodologies have been proven to be very useful in many diverse applications in science and engineering. In the context of image processing and its simplest form, CVT-based algorithms reduce to the well-known k -means clustering and are easy to implement. In this paper, we develop an edge-weighted centroidal Voronoi tessellation (EWCVT) model for image segmentation and propose some efficient algorithms for its construction. Our EWCVT model can overcome some deficiencies possessed by the basic CVT model; in particular, the new model appropriately combines the image intensity information together with the length of cluster boundaries, and can handle very sophisticated situations. We demonstrate through extensive examples the efficiency, effectiveness, robustness, and flexibility of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.