Abstract

Let 𝒰(n, d) be the class of unicyclic graphs on n vertices with diameter d. This article presents an edge-grafting theorem on Laplacian spectra of graphs. By applying this theorem, we determine the unique graph with the maximum Laplacian spectral radius in 𝒰(n, d). This extremal graph is different from that for the corresponding problem on the adjacency spectral radius as done by Liu et al. [Q. Liu, M. Lu, and F. Tian, On the spectral radius of unicyclic graphs with fixed diameter, Linear Algebra Appl. 420 (2007), 449–457].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.