Abstract

Background and objectivesDetection and classification of heart murmur using mobile-phone-collected sound is an emerging approach to the scale-up screening of valvular heart disease at a population level. Nonetheless, the widespread adoption of artificial intelligence (AI) methods for this type of mobile health (mHealth) application requires highly accurate and lightweight AI models that can be deployed in consumer-grade mobile devices. This study presents a lightweight deep learning model and a self-supervised learning (SSL) method to utilise unlabelled data to improve the accuracy of valvular heart disease classification using phonocardiogram data. MethodsThis study proposes a lightweight convolutional neural network (CNN) that consists of ten times fewer parameters than other deep learning models to classify phonocardiogram data. SSL is applied to harness a large collection of unlabelled data as pre-training to enhance the accuracy and robustness of the model and reduce the number of epochs required to converge. A mobile application prototype that encapsulates the model is developed to perform in-device inference and fine-turning. ResultsThe proposed lightweight model achieves an average accuracy of 98.65% in 10-fold cross-validation. When coupled with SSL using unlabelled data, the pre-trained model can reach an average accuracy higher than 99.4% in 10-fold cross-validation. Furthermore, SSL-trained models have a 4–20% improvement in classification accuracy over non-SSL-trained models when tested with perturbed or noisy data, suggesting that SSL improves robustness of the model. When deployed on common smartphones, in-device fine-tuning and inference of the model can be completed within 0.03–0.37 s, which is considerably faster than 0.22–5.7 s by a standard CNN model that have ten times the number of parameters. Our lightweight model also consumes only a third of the power compared to the larger standard model. ConclusionThis work presents a lightweight and accurate phonocardiogram classifier that supports near real-time performance on standard mobile devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.