Abstract

The present paper deals with the determination of thermodynamic quantities of thermoplastic polymers by using an optical fiber interrogator. Typically, laboratory methods such as differential scanning calorimetry (DSC) or thermomechanical analysis (TMA) are a reliable state-of-the-art option for thermal polymer analysis. The related laboratory commodities for such methods are of high cost and are impractical for field applications. In this work, an edge-filter-based optical fiber interrogator, which was originally developed to detect the reflection spectrum of fiber Bragg grating sensors, is utilized for the detection of the boundary reflection intensities of the cleaved end of a standard telecommunication optical fiber (SMF28e). By means of the Fresnel equations, the temperature-dependent refractive index of thermoplastic polymer materials is measured. Demonstrated with the amorphous thermoplastic polymers polyetherimide (PEI) and polyethersulfone (PES), an alternative to DSC and TMA is presented as the glass transition temperatures and coefficients of thermal expansion are derived. A DSC alternative in the semi-crystalline polymer analysis with the absence of a crystal structure is shown as the melting temperature and cooling-rate-dependent crystallization temperatures of polyether ether ketone (PEEK) are detected. The proposed method shows that thermal thermoplastic analysis can be performed with a flexible, low-cost and multipurpose device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.