Abstract

Numerical simulation of realistic compressible flows is very important and requires accurate and flexible tridimensional formulations, which should furthermore be robust and efficient. In this work we describe the development of a computational tool for numerical simulation of inviscid compressible 3-D fluid flow problems. This tool uses as the main building block an edge-based Galerkin FEM (Finite Element Method) together with a MUSCL (Monotonic Upstream-centered Schemes for Conservations Laws) approach to get a higher-order scheme with LED (Local Extremum Diminishing) property. The code is particularly developed for the simulation of supersonic and hypersonic flow regimes and several important (sometimes unavoidable) numerical procedures incorporated to increase its robustness are described. Some aspects related to the adoption of an edge-based data structure and other implementation issues are also described. Finally, some numerical model problems are analyzed and compared with results found in the literature demonstrating the effectiveness of the developed tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.