Abstract

In this paper, an edge-based smoothed stabilized discrete shear gap method (ES-DSG) is integrated with the C0-type high-order shear deformation plate theory (C0-HSDT) for free vibration and static analyses of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates. The material properties of FG-CNTRC are assumed to be graded through the thickness direction according to several distributions of the volume fraction of carbon nanotubes (CNTs). The stiffness formulation of the ES-DSG based on C0-HSDT is performed by using the strain smoothing technique over the smoothing domains associated with edges of elements. This hence does not require shear correction factors. The accuracy and reliability of the proposed method are confirmed in several numerical examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call