Abstract

A main objective of this paper is to provide the first model of how climate change, working through sexual selection, could have led to dramatic increases in hominin brain size, and presumably intelligence, in the Middle Pleistocene. The model is built using core elements from the field of family economics, including assortative mating and specialization and complementarities between mates. The main assumptions are that family public goods (e.g., conversation, shelter, fire) were particularly cognitively intensive to produce and became increasingly important for child survival during glacial phases. Intermediate climates (e.g., not the depths of severe glacial phases) create the largest gains from specialization, encouraging negative assortative mating. In contrast, severe glacial phases encourage positive assortative mating because of the rising importance of family public goods. One testable hypothesis is that absence of severe glacial phases should have led to stasis in brain size. Two other testable hypotheses are that severe glacial phases should have led to speciation events, as well as increases in brain size. The evidence shows that there was a million-year stasis in cranial size prior to the start of the severe glacial phases. This stasis is broken by a speciation event (Homo heidelbergensis), with the oldest fossil evidence dated near the close of the first severe glacial phase. In the next 300 kyr, there are two additional severe glacial phases, accompanied by considerable increases in cranial capacity. The last speciation event is Homo sapiens, with the earliest fossils dated near the end of the last of these two glacial phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call