Abstract

This article considers a two-stage assembly system with imperfect processes. The former is an automatic stage in which the required components are manufactured. The latter is a manual stage which deals with taking the components to assemble the end product. In addition, the component processes are independent of each other, and the assembly rate is variable. Shortage is allowed, and the unsatisfied demand is completely backlogged. Then, we formulate the proposed problem as a cost minimization model where the assembly rate and the production run time of each component process are decision variables. An algorithm for the computations of the optimal solutions under the constraint of assembly rate is also provided. Finally, a numerical example and sensitivity analysis are carried out to illustrate the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.