Abstract

<para xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> In solving the electrical power systems economic dispatch (ED) problem, the goal is to find the optimal allocation of output power among the various generators available to serve the system load. With the continuing search for alternatives to conventional energy sources, it is necessary to include wind energy conversion system (WECS) generators in the ED problem. This paper develops a model to include the WECS in the ED problem, and in addition to the classic economic dispatch factors, factors to account for both overestimation and underestimation of available wind power are included. With the stochastic wind speed characterization based on the Weibull probability density function, the optimization problem is numerically solved for a scenario involving two conventional and two wind-powered generators. Optimal solutions are presented for various values of the input parameters, and these solutions demonstrate that the allocation of system generation capacity may be influenced by multipliers related to the risk of overestimation and to the cost of underestimation of available wind power. </para>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.