Abstract

This paper analyses the net social benefits deriving from the medium-scale production of geopolymers based on volcanic ash compared to traditional cementitious materials used in construction and restoration sectors. In contrast to the existing literature grounded on the physical and mechanical characterization of geopolymers, our analysis considers two aspects: public finance savings from avoiding the disposal of volcanic ash in landfills and environmental benefits deriving from reduction in CO2 releases due to the production process at room temperature. Our case study focuses on the reuse of natural waste, namely the volcanic ash of the Mt. Etna volcano (Italy), whose disposal involves significant costs for society. Its use in the alkaline activation process avoids the exploitation of natural resources. Considering the huge amount of volcanic ash from Mt. Etna that falls on the urban areas of Eastern Sicily, the results show relevant economic benefits, in terms of both avoided costs and tax reductions for the citizens. Alongside these, significant environmental benefits are evidenced thanks to the release of up to 78% lower CO2 emissions by synthesised materials with volcanic ash than by traditional cementitious ones. Overall, the social cost savings compared to traditional materials is 0.339 EUR/kg for geopolymer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call