Abstract

Contrary to assumptions of habitat selection theory, field studies frequently detect ‘ecological traps’, where animals prefer habitats conferring lower fitness than available alternatives. Evidence for traps includes cases where birds prefer breeding habitats associated with relatively high nest predation rates despite the importance of nest survival to avian fitness. Because birds select breeding habitat at multiple spatial scales, the processes underlying traps for birds are likely scale‐dependent. We studied a potential ecological trap for a population of yellow warblers Dendroica petechia while paying specific attention to spatial scale. We quantified nest microhabitat preference by comparing nest‐ versus random‐site microhabitat structure and related preferred microhabitat features with nest survival. Over a nine‐year study period and three study sites, we found a consistently negative relationship between preferred microhabitat patches and nest survival rates. Data from experimental nests described a similar relationship, corroborating the apparent positive relationship between preferred microhabitat and nest predation. As do other songbirds, yellow warblers select breeding habitat in at least two steps at two spatial scales; (1) they select territories at a coarser spatial scale and (2) nest microhabitats at a finer scale from within individual territories. By comparing nest versus random sites within territories, we showed that maladaptive nest microhabitat preferences arose during within‐territory nest site selection (step 2). Furthermore, nest predation rates varied at a fine enough scale to provide individual yellow warblers with lower‐predation alternatives to preferred microhabitats. Given these results, tradeoffs between nest survival and other fitness components are unlikely since fitness components other than nest survival are probably more relevant to territory‐scale habitat selection. Instead, exchanges of individuals among populations facing different predation regimes, the recent proliferation of the parasitic brown‐headed cowbird Molothrus ater, and/or anthropogenic changes to riparian vegetation structure are more likely explanations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call