Abstract

The harmless disposal and resource utilization of human feces is important to the sanitation process. Hydrothermal liquefaction (HTL) can convert toilet feces into bio-crude oil and reduce waste. In this study, an integrated eco-toilet system was developed by combining vacuum micro-flush toilets with a continuous hydrothermal liquefaction reactor. The system operated stably for over 10 h. This system can serve 300 households and save 2759 m3 of water per year compared to traditional flush toilets. The energy recovery from the feces was 2.87 times the energy consumed for the HTL process. The HTL bio-crude oil yield was 28 wt%, and the higher heat value (HHV) of the bio-crude was 36.1 MJ/kg. The biochemical compounds of the bio-crude oil consisted of acid ester, hydrocarbons, phenols, and a nitrogenous heterocyclic compound. The carbon in the human feces was mainly transferred to the bio-crude oil, while nitrogen was mainly transferred to the aqueous phase product. The post-HTL aqueous stream could be treated and used as fertilizer. This system achieves energy self-sufficiency, along with water and energy savings. This integrated eco-toilet effectively converts feces into bio-crude to realize waste reduction and resource utilization of human feces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call