Abstract

N-acylated homoserine lactones (AHLs), a class of auto-inducers produced by Gram-negative bacteria, are typical signaling molecules in quorum sensing (QS) systems. Importantly, AHLs play a key role in determining the virulence of foodborne pathogens and reflect the activity of spoilage bacteria. In this study, an eco-friendly fluorescence-sensing platform for the rapid and sensitive detection of AHLs was developed and characterized. Molecularly imprinted polymers embedded with yellow-emitting carbon quantum dots (CQDs) were obtained via the sol-gel process using furanone as an alternative template molecule, and long-wave-emitting CQDs with excellent optical properties were used as signal conversion materials. After template elution, the blotting cavities on the surface of the CQD@MIPs (molecularly imprinted polymers) were able to selectively recognize AHLs, demonstrating a stronger fluorescence response compared with the corresponding CQD@NIPs (non-imprinted polymers). Under optimal test conditions, a good linear relationship between the concentration of analyte and the relative fluorescence intensity of the CQD@MIPs was observed. The linear detection range was 0–2.0 μM, and the limit of detection (LOD) was 0.067 μM. Importantly, the proposed sensing platform functioned as an optical detection strategy that responded quickly (2 min) to AHLs. Additionally, this sensing platform was applied to the analysis of AHLs in bacterial supernatant samples with satisfactory results. More interestingly, the 3D-printing CQD@MIPs were tentative explored in this work, which was personalized and portable, has an advantage of point of care testing (POCT) detection in the future. Based on these results, this detection strategy has demonstrated substantial potential for application in and the field of food safety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.