Abstract

A novel environmentally-friendly porous hydrogel adsorbent (GHPN) is firstly designed and prepared using dextran, phosphate, and calcium hydroxide for the adsorption of Be(II). GHPN shows good adsorption selectivity for Be(II) (Kd = 1.53 × 104 mL/g). According the adsorption kinetics and thermodynamics, the theoretical adsorption capacity of GHPN to Be(II) is 43.75 mg/g (35 °C, pH = 6.5), indicating a spontaneous exothermic reaction. After being reused for 5 cycles, the adsorption and desorption efficiencies of Be(II) with GHPN are obtained to be more than 80 %, showing acceptable recycling performance. Both of the characterizations and theoretical calculations indicate that the phosphate group, hydroxyl group, and amino group own the affinity to form stable complexes with Be(II). Benefiting from the introduction of phosphate and amino, the adsorption effect of the hydrogel adsorbent on Be(II) can be greatly improved, and surface precipitation, complexation, and ligand exchange are the dominant mechanisms of beryllium adsorption. The results suggest that GHPN has great potential to be utilized as an eco-friendly and useful adsorbent of Be(II) from aqueous solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call