Abstract
Pluripotent stem cells (PSCs) including induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) have emerged as a promising source for treating incurable diseases. Problems that urgently need to be resolved before the clinical application include avoiding potential xenopathogenic transmission and immune rejection that may be caused by the exposure of PSCs to animal-derived products. In addition, an efficient feeder cell-free culture condition would be required for reducing batch-to-batch variation and facilitating scale-up. Therefore, establishing an efficient xeno-free and extracelluar matrix-based culture system is a prerequisite for the clinical application of PSCs. In this study, by blocking protein kinase C and histone deacetylase activities, we formulated a medium that, in combination with vitronectin as an extracellular matrix, not only allows the long-term culture of hESCs and iPSCs but also efficiently generates xeno-free iPSCs. This xeno-free and feeder cell-free culture system would facilitate the clinical applications of both iPSC- and ESC-based cell therapies in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.