Abstract

The Sendai Framework for Disaster Risk Reduction 2015–2030 (SFDRR) proposed seven targets comprising 38 quantified indicators and various sub-indicators to monitor the progress of disaster risk and loss reduction efforts. However, challenges persist regarding the availability of disaster-related data and the required resources to address data gaps. A promising way to address this issue is the utilization of Earth observation (EO). In this study, we proposed an EO-based disaster evaluation framework in service of the SFDRR and applied it to the context of tropical cyclones (TCs). We first investigated the potential of EO in supporting the SFDRR indicators, and we then decoupled those EO-supported indicators into essential variables (EVs) based on regional disaster system theory (RDST) and the TC disaster chain. We established a mapping relationship between the measurement requirements of EVs and the capabilities of EO on Google Earth Engine (GEE). An end-to-end framework that utilizes EO to evaluate the SFDRR indicators was finally established. The results showed that the SFDRR contains 75 indicators, among which 18.7% and 20.0% of those indicators can be directly and indirectly supported by EO, respectively, indicating the significant role of EO for the SFDRR. We provided four EV classes with nine EVs derived from the EO-supported indicators in the proposed framework, along with available EO data and methods. Our proposed framework demonstrates that EO has an important contribution to supporting the implementation of the SFDRR, and that it provides effective evaluation solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call