Abstract

As one of the 2.1 to 1.9 Ga orogenic belts that welded the Columbia supercontinent, the Khondalite Belt in the North China Craton is a typical continent-continent collisional orogen that formed through the collision between the Yinshan and Ordos Blocks. Previous studies mostly focused on the collisional event in the Khondalite Belt but paid little attention to how the subduction system operated before the final closure of the ocean. To address this issue, we identified a series of interlayered meta-mafic and felsic rock assemblages in the Daqingshan Complex and implemented geochemical and geochronological analyses. Petrological and geochemical studies revealed that these rocks are bimodal and include plagioclase amphibolite (Group 1) and biotite plagiogneiss (Group 2). Geochemically, Group 1 samples show tholeiitic affinity, whereas Group 2 samples belong to the high-K calc-alkaline series. Geochemical data indicate that the protolith magma of Group 1 was most likely derived from the partial melting of lithospheric mantle with minor crustal contamination, whereas Group 2 rocks represent highly differentiated magma derived from the partial melting of ancient crustal materials. All the samples show depletion of HFSEs and enrichment of LILEs, indicative of a subduction-related magmatic arc environment. Zircon U-Pb dating results show that the protoliths of Group 1 samples yield crystallization ages of ∼2.47 Ga and metamorphic ages of 1.95 to 1.85 Ga, whereas the protoliths of Group 2 samples yield crystallization ages of ∼2.40 Ga and metamorphic ages of ∼1.85 Ga. Our new results and available geochemical, petrological, and isotopic data demonstrate that the bimodal volcanic sequence of the Daqingshan Complex was developed in a 2.47 to 2.40 Ga back-arc system along the southern margin of Yinshan Block. Subsequent collision between the Ordos and Yinshan Blocks resulted in the formation of the Khondalite Belt and final amalgamation of the Western Block between 1.95 and 1.85 Ga.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call