Abstract

Abstract Tropical El Nino Southern Oscillation (ENSO) is an important influence on natural systems and cultural change across the Pacific Ocean basin. El Nino events result in negative moisture anomalies in the southwest Pacific and are implicated in droughts and catastrophic wildfires across eastern Australia. An amplification of tropical El Nino activity is reported in the east Pacific after ca. 6.7 ka; however, proxy data for ENSO-driven environmental change in Australia suggest an initial influence only after ca. 5 ka. Here, we reconstruct changes in vegetation, fire activity and catchment dynamics (e.g. erosion) over the last 14.6 ka from part of the southwest Pacific in which ENSO is the main control of interannual hydroclimatic variability: Paddy's Lake, in northwest Tasmania (1065 masl), Australia. Our multi-proxy approach includes analyses of charcoal, pollen, geochemistry and radioactive isotopes. Our results reveal a high sensitivity of the local and regional vegetation to climatic change, with an increase of non-arboreal pollen between ca. 14.6–13.3 ka synchronous with the Antarctic Cold Reversal, and a sensitivity of the local vegetation and fire activity to ENSO variability recorded in the tropical east Pacific through the Holocene. We detect local-scale shifts in vegetation, fire and sediment geochemistry at ca. 6.3, 4.8 and 3.4 ka, simultaneous with increases in El Nino activity in the tropical Pacific. Finally, we observe a fire-driven shift in vegetation from a pyrophobic association dominated by rainforest elements to a pyrogenic association dominated by sclerophyllous taxa following a prolonged (>1 ka) phase of tropical ENSO-amplification and a major local fire event at ca. 3.4 ka. Our results reveal the following key insights: (1) that ENSO has been a persistent modulator of southwest Pacific climate and fire activity through the Holocene; (2) that the climate of northwest Tasmania is sensitive to long-term shifts in tropical ENSO variability; and (3) that there has been possible stationarity in the spatial influence of ENSO over this region through the Holocene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.