Abstract

Rocks may undergo complex pressure–temperature (P–T) histories during orogenesis in response to alternating episodes of synconvergent burial and exhumation. In this study, chemical zoning in garnets combined with textural and chemical evidence from the schist of Willow Creek in the Albion Mountains of south-central Idaho (USA), reveals a complex P–T path during the early stages of Sevier orogenesis. The distribution of quartz inclusions combined with internal resorption features establishes a hiatus in garnet growth. Chemical zoning was simulated using a G-minimization approach to yield a P–T path consisting of three distinct pressure changes during increasing temperature, defining an “N” shape. Lu–Hf isochron ages from multiple garnet fractions and whole-rock analyses in two samples are 132.1 ± 2.4 and 138.7 ± 3.5 Ma. The samples were collected from the hanging wall of the Basin-Elba thrust fault and yielded results similar to those previously obtained from the footwall. This leads to several conclusions: (1) Both the hanging wall and footwall experienced the same metamorphic event, (2) the paths document a previously unrecognized crustal thickening and synorogenic extension cycle that fills an important time gap in the shortening history of the Sevier retroarc, suggesting progressive eastward growth of the orogen rather than a two-stage history, and (3) episodes of extensional exhumation during protracted convergent orogenesis are increasingly well recognized and highlight the dynamic behavior of orogenic belts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call