Abstract

For problems involving uncertainties in design variables and parameters, a bi-objective evolutionary algorithm (EA) based approach to design optimization using evidence theory is proposed and implemented in this paper. In addition to a functional objective, a plausibility measure of failure of constraint satisfaction is minimized. Despite some interests in classical optimization literature, such a consideration in EA is rare. Due to EA's flexibility in its operators, non-requirement of any gradient, its ability to handle multiple conflicting objectives, and ease of parallelization, evidence-based design optimization using an EA is promising. Results on a test problem and a couple of engineering design problems show that the modified evolutionary multi-objective optimization (EMO) algorithm is capable of finding a widely distributed trade-off frontier showing different optimal solutions corresponding to different levels of plausibility failure limits. Furthermore, a single-objective evidence based EA is found to produce better optimal solutions than a previously reported classical optimization procedure. Handling uncertainties of different types are getting increasingly popular in applied optimization studies and more such studies using EAs will make EAs more useful and pragmatic in practical optimization problem-solving tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.