Abstract

In this paper, we propose a cost-effective optimal-topology retrofitting technique for hollow-steel-section columns to sufficiently support industrial running cranes. A so-called bi-directional evolutionary structural optimization (BESO) method was encoded within the MATLAB modeling framework, with a direct interface with an ANSYS commercial finite-element analysis program, to determine the optimal topology of double external steel plates connected to columns in a 3D space. For the initial ground structure, we have adopted standard uniform double U-shaped external stiffener plates located at the top and bottom flange layers of an I-beam to box-column connection (IBBC) area. The influences of inelastic materials and the incorporated nonlinear geometry can effectively describe the premature (local buckling) failures of the columns in an IBBC area. The applications of the proposed optimal-topology BESO-based stiffening method are illustrated through the retrofitting of three hollow-steel-section columns, characterized by non-slender and slender compression sections. Some concluding remarks are provided on the pre- and post-retrofitted responses of the columns, with the results showing both the accuracy and robustness of the proposed external stiffening schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call