Abstract

A problem for a nanosized penny-shaped fracture in an infinite homogeneous isotropic elastic medium is considered. The fracture is opened by applying an axisymmetric normal traction to its surface. The surface energy in the Steigmann–Ogden form is acting on the boundary of the fracture. The problem is solved by using the Boussinesq potentials represented by the Hankel transforms of certain unknown functions. With the help of these functions, the problem can be reduced to a system of two singular integro-differential equations. The numerical solution to this system can be obtained by expanding the unknown functions into the Fourier–Bessel series. Then the approximations of the unknown functions can be obtained by solving a system of linear algebraic equations. Accuracy of the numerical procedure is studied. Various numerical examples for different values of the surface energy parameters are considered. Parametric studies of the dependence of the solutions on the mechanical and the geometric parameters of the system are undertaken. It is shown that the surface parameters have a significant influence on the behaviour of the material system. In particular, the presence of surface energy leads to the size-dependency of the solutions and smoother behaviour of the solutions near the tip of the crack.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.