Abstract

The impact of a flat-ended cylindrical rod onto a rigid stationary anvil, often known as the Taylor impact test, is studied. An axisymmetric model is developed to capture the deformation behaviour of the rod after impact. The most distinctive feature of the proposed model is that it takes into account the spatial and temporal variation of both longitudinal and radial deformation and consequently the strains and strain rates. The final deformed shapes and time histories of different field variables, as obtained from the model, are found to be in good agreement with corresponding experimental and numerical results reported in the literature. The proposed model is then used to formulate an inverse framework to estimate the Johnson–Cook constitutive parameters. In the inverse formulation, the objective function is constructed using the final deformed length and diameter at the impact end of the retrieved rod. Finally, the potential of the proposed model in estimating material parameters is illustrated through some examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.