Abstract

A novel and completely autonomous guided wave system for flood detection in the hollow cross-beam members of offshore steel oil rigs is presented. Underwater non-destructive testing methods such as ultrasound have been used to inspect for the presence of seawater in these applications, often in conjunction with remote operating vehicles. Alternatively, a monolithic PZT guided wave transducer which can be permanently attached to a sub-sea installation and that can be powered by the action of the seawater is now being developed. Upon activation, the transducer transmits an ultrasound-encoded signal to a receiver, in the form of a real-time digital signal processing system at the surface level. Experiments have been carried out using a jointed steel pipe structure, 10 m in length, 0.5 m in diameter and 16 mm in thickness, completely immersed in seawater. The transmitter was attached to the inner wall of a spur pipe and configured to generate narrow bandwidth, low frequency ultrasonic chirp signals, coupled to the pipe as an axisymmetric mode. Results confirmed that although some attenuation occurs, the system signal processing system successfully identified the signals above the background noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.