Abstract

Rapid and accurate determination of compressor characteristic maps is essential for the initial design of centrifugal compressors in aircraft power systems. The accuracy of existing methodologies, which rely on combinations of loss models, varies significantly depending on the compressor’s geometry and operational range. This variance necessitates substantial experimental or Computational Fluid Dynamics (CFD) data for coefficient calibration. To address this challenge, this study presents an axisymmetric characteristic model for compressor performance assessment. This model incorporates the factors of blade angle, meridional passage area, and the radial deflection angle of meridional streamlines of the compressor. These factors are derived from fundamental aerodynamic equations encompassing mass, momentum, and energy conservation of the compressor. In contrast to conventional one-dimensional approaches, the proposed method reduces the number of loss coefficients and more effectively accounts for the impact of geometric alterations on centrifugal compressor properties. Furthermore, the model reduces dependence on experimental and CFD data. Efficacy of the model is validated using experimental data from four distinct types of centrifugal compressors. Correlation analysis reveals that the model’s coefficients can be expressed as functions of the ratio of the Reynolds number to the impeller tip speed. This ratio serves as a characteristic parameter for the design and optimization of centrifugal compressors. Consequently, the proposed method offers an efficient and accurate means for the quick computation of centrifugal compressor characteristics. This is of great significance for improving the efficiency of centrifugal compressors and reducing energy consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call