Abstract
AbstractWe present an axiomatic framework for nonstandard analysis—the Nonstandard Class Theory (NCT) which extends von Neumann–Gödel–Bernays Set Theory (NBG) by adding a unary predicate symbol St to the language of NBG (St(X) means that the class X is standard) and axioms—related to it—analogs of Nelson's idealization, standardization and transfer principles. Those principles are formulated as axioms, rather than axiom schemes, so that NCT is finitely axiomatizable. NCT can be considered as a theory of definable classes of Bounded Set Theory by V. Kanovei and M. Reeken. In many aspects NCT resembles the Alternative Set Theory by P. Vopenka. For example there exist semisets (proper subclasses of sets) in NCT and it can be proved that a set has a standard finite cardinality iff it does not contain any proper subsemiset. Semisets can be considered as external classes in NCT. Thus the saturation principle can be formalized in NCT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.