Abstract

In this paper we develop an axiomatic setup for algorithmic homological algebra of Abelian categories. This is done by exhibiting all existential quantifiers entering the definition of an Abelian category, which for the sake of computability need to be turned into constructive ones. We do this explicitly for the often-studied example Abelian category of finitely presented modules over a so-called computable ring R, i.e. a ring with an explicit algorithm to solve one-sided (in)homogeneous linear systems over R. For a finitely generated maximal ideal 𝔪 in a commutative ring R, we show how solving (in)homogeneous linear systems over R𝔪 can be reduced to solving associated systems over R. Hence, the computability of R implies that of R𝔪. As a corollary, we obtain the computability of the category of finitely presented R𝔪-modules as an Abelian category, without the need of a Mora-like algorithm. The reduction also yields, as a byproduct, a complexity estimation for the ideal membership problem over local polynomial rings. Finally, in the case of localized polynomial rings, we demonstrate the computational advantage of our homologically motivated alternative approach in comparison to an existing implementation of Mora's algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call